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Abstract 

Heritage Buildings are significant of their historical and 

architecture added value, which require in deep and precise 

preliminary brainstorming when considering upgrade or 

retrofitting of these valuable buildings. This study opts to 

spotlight on some passive design architecture interventions to 

improve the thermal comfort and the required cooling energy 

for the building. The Murabaa Palace in Riyadh was selected 

as a case study. The design builder software was used to 

evaluate the energy performance of four passive architectural 

design alternatives. The results show that using Low-E double 

glass in addition to applying double wall with polystyrene 

thermal insulation can enhance the thermal comfort inside the 

building and reduce the energy performance and CO2 

emissions to 17% and 9% respectively. 

Keywords: Heritage buildings, passive design, energy 

conservation, and reduction of CO2 emissions. 

 

 

I. INTRODUCTION 
Heritage buildings are integral parts of modern life, in which they 

gain their significance from their historical, archeological, and 

cultural added value [1; 2; 7; 13]. Therefore, improving the energy 

performance and indoor thermal comfort of an as built building 

with minimum interventions and preserving its heritage value is a 

dilemma. This is the role of introducing passive architectural 

design by precise choice of building materials and additions [9; 14; 

18]. Accordingly, this research aims to spotlight on some passive 

architectural alternatives that can enhance indoor thermal comfort, 

reduce energy required for cooling and in turn minimize the CO2 

emissions.  

Moreover, heritage buildings inherited from the past are a crucial 

component of our modern society. Heritage included those 

buildings, structures, artifacts, and areas that are historically, 

aesthetically and architecturally significant. Figure 1 below shows 

the number of world heritage properties inscribed each year per 

region. As of July 2019, a total of 1,121 World Heritage Sites 

located in167 States around the globe. Additionally, three key 

factors determine whether a property worth to be listed as heritage 

are: historic significance, historic integrity, and historical context. 

Historic significance is related to how valuable the property to the 

history, archaeology, engineering or culture of a community. This 

includes any heritage building that is associated with a past event 

or an important person in addition to those building that has a 

distinctive physical characteristic. Historic integrity is relevant to 

the authenticity of the building identity with existing evidence of 

its unique physical characteristics during the building's historic 

period [5]. 

 

 

 

 

 

 

 

 

 

Figure 1. The number of world heritage properties inscribed each 

year per region [5]. 

According to Al-Sakkaf et al. [3; 4] the trends of protection and 

use of heritage buildings and cultural heritage components testify 

to increasing attention in the study of heritage and legacy. Studies 

have shown that project life cycle phases have been developed to 

evaluate the performance of buildings in general. Nevertheless, 

heritage buildings and their need were not considered. In heritage 

buildings projects there are six life cycle phases include: a) 

planning, b) manufacturing, c) transportation, d) construction, e) 

operation and f) maintenance phases. In addition, there is a lack of 
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a comprehensive rating system that could assess the heritage 

buildings elements and to study the possibility of passive design 

architecture interventions to evaluate the thermal comfort interims 

of energy for heritage buildings. Furthermore, this paper will assist 

facility managers in their rehabilitation decisions. Therefore, study 

opts to spotlight on some passive design architecture interventions 

to improve the thermal comfort and the required cooling energy for 

the building Accordingly, the case study is applied in this research 

MP in Saudi Arabia. 

Heritage buildings require reliable restoration, preservation 

procedures and evaluate the performance of heritage building 

interims of thermal comfort and user satisfaction. Therefore, it is 

essential to develop a sustainability rating system that accounts for 

socio-economic factors, to manage the maintenance of heritage 

buildings. In the Middle East, for instance, BREEAM and LEED 

rating systems cannot be employed because of different climatic 

conditions and local contexts [4; 16]. A sustainability rating tool 

can be defined as a systematic methodology to examine the overall 

sustainability assessment of a whole building. This includes 

economic, environmental, social, cultural, and value-based aspects. 

Thus, the outcome of such a tool can be used as a means of 

comparison with other buildings [2]. Around the globe, many 

rating systems pertain to different areas of sustainable 

development. By March 2010, there were 382 registered building 

software tools for sustainability development [3]. Nevertheless, 

only a few systems are well established and recognized by the 

World Green Building Council. This comprises Green Globes, 

Green Building Index, Green Building Program (GBP), Green ship 

Indonesia, Green Globes, BREEAM, LEED, etc. 

Another important aspect that affects building performance is 

orientation. Building orientation can maximize opportunities for 

passive solar heating when needed, solar heat gain avoidance 

during cooling time, natural ventilation, and day lighting 

throughout the year. For example, southern exposure is the key 

physical orientation feature for passive solar energy in the northern 

hemisphere. In general, a south-facing orientation within 30o east 

or west of true south will provide around 90% of the maximum 

static solar collection potential. The optimum directional 

orientation depends on site specific factors and on local landscape 

features such as trees, hills, or other buildings that may shade the 

sunspace during certain times of the day. Rectangular buildings 

should be oriented with the long axis running east-west, so the east 

and west walls receive less direct sun in the summer. In the winter, 

passive solar heat gain occurs on the south side of the building [3; 

15].  

Besides, this research will follow various steps starting with a brief 

introduction describing the problem statement and the aim. Then 

the methodology that shows the case study data, the design builder 

simulation software calibration and data entry, and passive design 

alternatives and data entry. Ending this research with results and 

final conclusion. 

 

II. LITERATURE REVIEW  
Several previous models were reported in the literature that 

managed to assess energy consumption in residential buildings, 

office buildings and commercial buildings. Fayaz et al. [10] 

utilized back propagation artificial neural networks for the 

prediction of household energy consumption. They utilized some 

pre-processing procedures of data normalization and statistical 

moments for data cleaning and filtering. Results demonstrated that 

the filtering stages could enhance the prediction accuracies, such 

that the developed model achieved mean absolute error, mean 

absolute percentage error and root mean squared error of 4.32, 

11.96% and 5.46, respectively. Mohamed Abdelkader et al. [16] 

studied the implementation of a set of machine learning models in 

the emulation of heating and cooling loads in residential buildings. 

The input variables encompassed surface area, roof area, wall area, 

glazing area, glazing area distribution, overall height and relative 

compactness. The utilized machine learning models were back 

propagation artificial neural network, generalized regression neural 

network, radial basis neural network, radial kernel support vector 

machines and ANOVA kernel support vector machines. It was 

argued that radial basis neural network performed better than other 

machine learning models obtaining mean absolute percentage 

error, mean absolute error and root mean squared error of 1.01%, 

0.53 and 0.21, respectively.  

Gassar et al. [12] introduced a set of data-driven models for the 

sake of simulating electricity and gas consumption in residential 

buildings in London at the lower supper output areas and middle 

supper output areas. Their study included the use of multi-layer 

neural network, multiple regression, random forest and gradient 

boosting. The input parameters involved average number of rooms 

per house, number of buildings, household spaces, land area, 

number of households, population, median house price and annual 

median household income. It was highlighted that multi –layer 

neural network outperformed other machine learning models at 

both levels of lower supper output areas and middle supper output 

areas yielding a correlation coefficient more than 99%. Gao et al. 

[11] studied the utilization of a set of machine learning paradigms 

for designing energy efficient residential buildings. This comprises 

elastic net, Gaussian process regression, least median of squares 

regression, multi-layer perceptron, radial basis function regression 

and others. The outputs of the model were the amounts of heating 

and cooling loads and they were calculated based on a set of 

building characteristics. It was inferred that random forest, rules 

decision table, alternating model tree, lazy k-star yielded less 

prediction error than other machine learning models.     

Turhan et al. [17] compared the results of an energy simulation 

software called “KEP-IYTE-ESS” and artificial neural network in 

forecasting heating loads of buildings. The input variables of the 

developed artificial neural network model were width\length ratio, 

area/volume ratio, wall overall height transfer coefficient, total 

external surface area, and total window area/total external surface 

area ratio. Simulation results showed good similarity between the 

predicted and observed predicted values. In this regard, the 

developed artificial neural network attained mean absolute 

percentage error of 5.06% and successful predication rate of 

97.7%. Amber et al. [6] compared the prediction capabilities of 

five intelligent techniques for forecasting electricity consumption 

in an administrative building. The deployed artificial intelligence 

models were artificial neural network, deep neural network, 

support vector machines, genetic programming and multiple 

regression. The electricity consumption was simulated according to 

the solar radiation, temperature, wind speed, humidify and weekly 

index. It was stated that the developed artificial neural network 

surpassed other artificial intelligence models accomplishing mean 

absolute percentage error of 6%.  

Chae et al. [19]  proposed artificial neural network model for 

emulating sub-hourly electricity consumption in commercial 

buildings. The input predictors were environmental, operational 

and time factors. The environmental factors included sky 

condition, wind speed, rain indicator, precipitation probability, 

outdoor relative humidity and outdoor dry-bulb temperature. The 

developed Bayesian regularized neural network with Levenberg–

Marquart back propagation algorithm was found to provide a good 

predictive model that can minimize energy costs in buildings. Yu 

et al. [21] employed decision tree for simulating future building 

energy demand. The predicted loads were obtained according to 

annual average air temperature, house type, construction type, floor 

area, heat loss equivalent, equivalent leakage area, number of 

occupants, space heating, hot water supply and type of kitchen. It 
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was projected that the developed decision tree model could 

accomplish accuracies of 93% and 92% for the training and testing 

datasets, respectively. 

Jovanovic et al. [20]  studied the implementation of an ensemble of 

artificial neural networks in forecasting heating energy 

consumption. This encompassed feedforward backpropagation 

neural network, radial basis function network and adaptive neuro-

fuzzy interference system. The input parameters involved mean 

daily outside temperature, mean daily wind speed, total daily solar 

radiation, minimum daily temperature, maximum daily 

temperature, relative humidity, day of the year, month of the year 

and heating consumption of the previous day. Results showed that 

the three different types of artificial neural networks accomplished 

a perfect agreement between the actual and predicted values. In the 

view of the above, it can be derived that most of the reported 

models evaluate energy consumption in typical residential, office 

and commercial buildings. In this context, the literature lacks 

models which can look at the energy consumption of heritage 

buildings, and the environmental implications of their different 

architectural design alternatives.   

 

III. METHODOLOGY 
The methodology of this research that was followed to enhance the 

energy performance of the Murabaa palace heritage building is 

divided into two main parts as will be described below in detail: 1) 

the case study description; 2) Design Builder software calibration 

and data entry; and 3) Passive design alternatives and energy 

simulation.  

A. Case Study Data 
Murabba Palace is in Riyadh, Kingdom of Saudi Arabia. It was 

built around 150 years ago. Murabba Palace is one of the most 

popular historic buildings in the Kingdom with an area 

of 9,844.64 𝑚2. The building gets its name from its square shape. 

It is one of the museums in the city and is comprised of 12 

designated areas with conference rooms, meeting rooms, and 

administrative offices. The main materials used in its construction 

were bricks, indigenous stones, tamarisk trunk and palm-leaf 

stalks. The walls of the building were built using straw reinforced 

adobe with engraved ornaments on coating as shown in Figure 2. 

 

Figure 2. 3 D model for Murabaa Palace. 

 

 

B. Design Builder Calibration and Data Entry 
Design Builder software [8] version 4.5.0.148 was utilized to 

perform the energy simulations for the selected passive design 

insulation retrofitting for the Murabaa Palace. The location of the 

building is Riyadh and the selected weather data form the software 

template is SAU_RIYADH_IWEC. The activity template was set 

to Generic Office Area. The building has no lighting control. The 

used HVAC system is central unit VAV Air cooled chiller. The 

mechanical ventilation is turned on. No heating system is utilized. 

Moreover, natural ventilation and mixed mode are both set in 

action in the software. The windows in the building are composed 

of single layer 6mm clear glass.  

The construction material data entry was divided into four 

categories: 1) roof floor layers; 2) ground floor layers; 3) typical 

floor levels; and 4) external wall layers. As shown in Figure 3, the 

roof comprises 15-20 cm diameter wooden athel beam, 3 cm palm 

bot layer, 1cm date palm leaves, non-woven layer, 20 cm stabilized 

soil layer. Furthermore, the ground floor consists of compacted 

filling material, polyethylene layer for thermal insulation, 10 cm 

reinforced concrete, 2 cm cement mortar, 6 cm Riyadh stone stones 

as shown in Figure 4. Additionally, as shown in Figure 5, the first-

floor layers are divided into 15 cm wooden athel tree trunk beam, 3 

mm palm bot, 1 cm palm leaves layers, non-woven polyester layer, 

10 cm mud soil and 10 cm stabilized earth. Finally, the external 

wall is 40 cm stabilized earth bricks with 3 cm thick external and 

internal stabilized earth render. The total U-values for roof floor, 

ground floor, first floor, and external wall layers are 0.441 

W/m2.K, 0.779 W/m2.K, 0.406 W/m2.K, and 1.737 respectively.  

 

    

 
Figure 2. Roof floor layer: a) as built detail, b) design builder data 

entry roof layer. 

 

Figure 3. Ground floor layer: a) as built detail, b) design builder 

data entry ground layer. 

 
Figure 4. First floor layer: a) as built detail, b) design builder data 

entry ground layer. 
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C. Passive Design Alternatives and Energy 

Simulations 
According to the heritage character of the building, the selected 

passive interventions were taken place to improve the energy 

performance of the building and the indoor thermal comfort with 

minimum intervention and retrofitting actions to preserve the 

heritage entity of the building exterior shape and the internal 

character of the building as much as possible. There are four 

scenarios that were utilized as follows: 1) replacing the existing 

single glass with double reflected glass with 13 mm gas filled gap 

that decreases the U-value from 5.360 W/m2.K, as in the base case, 

to be 2.294 W/m2.K; 2) replacing the existing single glass with 

double reflected glass with 13 mm gas filled gap that decreases the 

U-value from 5.360 W/m2.K to be 1.622 W/m2.K; 3) using the loE-

glass as in the second scenario in addition to 5 cm air-gap and 12 

cm rammed earth brick that makes the U-value 1.614 W/m2.K as 

shown in Figure 5 (a); and 4) using the loE-glass as in the second 

scenario in addition to 5 cm expanded polystyrene thermal 

insulation and 12 cm rammed earth brick which achieves U-value 

0.568 W/m2.K as shown in Figure 5 (b). 

 
Figure 5. Proposed double wall layers: a) double wall with air-

gap, b) double wall with polystyrene. 

 

IV. RESULTS AND DISCUSSION 
According to the simulations performed using design builder 

software the fourth case (low E double glass with double wall 

enclosing thermal insulation) achieves the minimum cooling 

energy consumption of 96779 Wh/m2 annually, which is attributed 

to the minimum U-value. The other three cases consume 112129 

Wh/m2, 114908 Wh/m2, 112718 Wh/m2 respectively as illustrated 

in Table 1. Hence, the four cases achieve reduction in cooling 

energy consumption than the base case as follows: (case_1) 4%; 

(case_2) 2%; (case_3) 4%; and (case_4) 17%. Moreover, although 

the annual cooling energy consumption in case of using reflective 

glass case is lower than that when applying double wall with air 

cavity, but in the summer peak months (June, July, August, and 

September) it can be recognized, based on Table 1, the double wall 

achieves more reduction than using reflective glass only.  

Accordingly, the carbon emissions inherit the same reduction 

characteristics in the four passive intervention cases as shown in 

table 2. Using double reflective glass possesses 132176 Kg CO2 

equ that represents 2% reduction than the base case. Applying 

double low-E glass emits 132532 Kg CO2 equ, which is equal to 

1.8% reduction than the base case. Utilizing both double low-E 

glass and double wall with air gap represents 1% reduction with 

133860 Kg CO2 equ. Finally, applying both double low-E glass 

and double wall with thermal insulation emits 122873 Kg CO2 equ, 

which is equal to 9 % reduction than the base case.  

The predictive mean value (PMV) is a metric used to indicate the 

degree thermal comfort achieved in a certain space. The value of 

this metric ranges from value of 3 to -3, and improvement in this 

metric takes place when its value tends to zero. Therefore, based 

on Table 3 and Figure 6, case 4 has the best PMV values than the 

other three cases and it improves the indoor thermal comfort than 

the base case through the twelve months of the year. Moreover, it 

can be recognized that applying double low-E glass achieves more 

improvement than using double reflective glass in the winter 

months.   

 

 

Table 1. Monthly and annual cooling electricity. 

 As 

Built 

Case1 

Wh/m2 

Case2 

Wh/m2 

Case3 

Wh/m2 

Case4 

Wh/m2 

January  51 44 70 77 129 

February  535 504 587 598 687 

March  1692 1635 1813 1835 1994 

April  6958 6704 7061 7020 6556 

May  15711 15151 15482 15201 12929 

June  17362 16699 16961 16579 13824 

July  21015 20151 20441 20000 16619 

August  20596 19798 20033 19577 16190 

September  16924 16310 16623 16253 13648 

October  11370 10973 11377 11158 9788 

November  3976 3848 4105 4059 3988 

December  323 312 356 360 428 

Total 116513 112129 114908 112718 96779 

 

 

Table 2. Monthly and annual CO2 emissions equivalent. 

 As 

Built 

Case1 

Kg equ. 

Case2 

Kg equ. 

Case3 

Kg 

equ. 

Case4 

Kg 

equ. 

January  5680 5676 5696 5691 5727 

February  5246 5227 5284 5277 5338 

March  6208 6173 6295 6281 6391 

April  9623 9469 9661 9686 9379 

May  15170 14831 14861 15031 13484 

June  15462 15060 14987 15219 13317 

July  18384 17861 17769 18036 15720 

August  17897 17414 17279 17556 15227 

September  15430 15057 15023 15247 13444 

October  12539 12299 12411 12543 11581 

November  7583 7505 7633 7661 7590 

December  5612 5605 5634 5631 5675 

Total 134833 132176 132532 133860 122873 

 

Table 3. Monthly Fanger PMV. 

 As 

Built 

Case1 

 

Case2 Case3 Case4 

January  -1.02 -0.99 -0.88 -0.85 -0.60 

February  -0.57 -0.55 -0.46 -0.44 -0.30 

March  -0.10 -0.09 -0.02 -0.02 0.04 

April  -0.32 -0.33 -0.27 -0.27 -0.34 

May  0.38 0.35 0.39 0.37 0.13 

June  0.82 0.78 0.81 0.78 0.45 

July  0.76 0.72 0.75 0.72 0.38 

August  0.88 0.83 0.86 0.83 0.47 

September  0.67 0.63 0.67 0.64 0.34 

October  0.74 0.73 0.76 0.75 0.63 

November  0.17 0.17 0.22 0.22 0.20 

December  -0.68 -0.64 -0.56 -0.55 -0.34 
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 Figure 6. Fanger PMV thermal comfort. 

 

V. CONCLUSION 
As the heritage buildings has their significant character and added 

value to our today's architecture, also as the whole world stands 

hand in hand to achieve sustainability through our daily practices 

especially in building sector, the heritage buildings possess certain 

difficulties when they are required to conserve energy and enhance 

their indoor thermal comfort while preserving their architecture 

materials and character. Accordingly, this research introduced few 

passive architecture treatments to enhance the indoor thermal 

comfort, reduce energy consumption and minimize CO2 emission. 

The four selected alternatives are 1) using double reflective glass, 

2) using double low-R glass, 3) using double low-E glass with 

double wall and air gap, and 4) using double low-E glass with 

double wall and thermal insulation. The fourth alternative was able 

to achieve reduction in both required cooling energy and CO2 

emissions with percentages 17% and 9% better than the as built 

base case. However, these findings should be require in deep life 

cycle cost analysis to stand for the economic worth of these passive 

designs compared to the improvements in energy and thermal 

comfort. 
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